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Abstract

This paper presents active boundary control—ABC—of an Euler–Bernoulli beam, which enables one to generate a desired

boundary condition at any designated position of a target beam structure, thereby permitting the structure to possess desired

properties characterized by the boundary condition. Furthermore, ABC has potential to create a completely vibration-free

state in the designated area of a beam. This paper begins by presenting the principle of ABC using a transfer matrix method,

the optimal control law of the ABC system being derived. It is found that, in addition to conventional four classical boundary

conditions: free, pinned, clamped and sliding support, ABC can generate two more boundary conditions that may not be

observed in real systems but realized by ABC. It is also found that as a result of applying ABC to a specific location, including

a current conventional boundary of a beam, a completely vibration-free state in the target region of a beam can be realized.

Finally, an experiment using an adaptive feedforward control was conducted, demonstrating that ABC enables the generation

of a desired boundary condition at the designated location of a target beam, and of a completely vibration-free state of a beam.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Recent technological developments have increased the need for the design of vibration-free structures, especially
in the nano-technology community. A technology road map disclosed recently outlining the requirements for
future generations of semiconductors shows that a key technology element, the width of electrical lead wire, is
planned to be as narrow as 22nm, which is the width of only 100 atoms, and in fact no technology is currently able
to achieve this target. With a view to realizing future semiconductors having a highly stringent specification, many
technological problems must be resolved. Among these, the establishment of nano-infrastructure is essential; not
even a micro-vibration is allowed for a semiconductor fabricating machine. As such, it is worth beginning by
reviewing the current status of active vibration control technology and assessing its potential to provide the
vibration-free environment required for future generation semiconductor designs and similar applications.

Design methodologies for active vibration control of a distributed-parameter structure can be roughly
divided into two categories: the modal-based control approach [1–13]. Modal-based control—which can
further be classified into two categories: high performance, narrow band high authority control (HAC), and
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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low performance, broad band low authority control (LAC)—is premised on the assumption that all structural
modes are excited to some degree. When attempting to suppress the vibration of a distributed parameter
structure using HAC, the method encounters difficulty in achieving control because of the generally large
number of modes involved; modal-based control theoretically requires as many sensors and actuators as the
number of modes to be controlled. Even with advanced control such as H-infinity control [14], m-synthesis [15]
and Linear Matrix Inequality control (LMI) [16], the resulting controller will require an astonishingly large
order even for an extremely simple control object. As such, HAC has a limit on the number of structural
modes it can deal with. On the contrary, LAC, which is typically implemented using velocity feedback (DVFB)
with collocated sensors and actuators [17–19], may treat all structural modes equally; however, it is not able to
preferentially damp modes that are more dominant while ignoring modes that are inconsequential to the final
result. Active wave control is based on the excitation mechanism of structural modes. By actively suppressing
reflected waves produced in a structure, active wave control aims to make all structural modes inactive, rather
than augmenting the damping of a structure. It may thus be regarded as imposing the characteristics of an
infinite structure, in which no vibration modes occur, onto a finite structure. The active wave control law has
been applied to a flexible beam in a restricted frequency range [9,10,13].

This paper presents active boundary control, ‘‘ABC’’, of a beam that allows the generation of a vibration-
free state in a designated area of a target structure. The term ‘‘boundary control’’ is already employed in a
number of research fields. For instance, the expression is utilized for the purpose of turbulent boundary layer
control or laminar flow control in the fluid dynamics field [20–22]. It is also used in vibration control of a
flexible cable [23] and a beam [24–27]. In these instances, the boundary of a structure is defined to be the
location where a control actuator/sensor can be installed. Thus the term ‘‘boundary control’’, as used
previously refers to the control object per se or control actuator/sensor placement.

This paper is concerned with active boundary control, ABC, which possesses the following properties: (i)
control capability of generating a desired boundary condition at a designated location of a structure, so that
the characteristics of a structure governed by the boundary condition may be controlled; (ii) control capability
of generating a completely vibration-free state at a designated region of a structure; (iii) actuators/sensors may
be placed at any location of the structure. Therefore, the definition of active boundary control presented in the
paper is intrinsically different from those used in the past. For the purpose of emphasizing the new concept of
ABC presented in this work, a simplistic model with a simple control strategy is employed: a flexible
(Euler–Bernoulli) beam controlled by feedforward control. As in all applications of control, if a disturbance
reference signal can be obtained then augmentation with a feedforward system will offer advantages.
Feedforward active vibration control is not new; what is new is the control law formulation in this paper
which, via the use of wave concepts, explicitly targets a modification to the boundary conditions of the
structure (and not necessarily via application of the control input at the boundary of the structure as is used in
active control of magnetic bearings, for instance). By actively controlling a boundary condition governing the
structural modes of a beam, ABC permits the nullification of the beam vibration, and hence differs, in
principle, from active wave control [5–13] which is aimed at suppressing reflected waves. By utilizing a transfer
matrix method (see Ref. [28], the ABC law is derived using feedforward control. Moreover, in addition to the
four classical boundary conditions: free, clamped, pinned and sliding support, ABC allows the generation of
two more boundary conditions which may not be observed in real systems, but are realized by ABC. It is
found that applying ABC to a specific location, including a current conventional boundary of a beam, a
completely vibration-free state—neither progressive waves nor reflected waves exist—can be realized in the
designated region of a flexible beam. Finally, an experiment using adaptive feedforward control was
conducted, demonstrating that ABC enables one to generate a desired boundary condition at a designated
location of a target beam, as well as to produce a completely vibration-free state for a beam.

2. Active boundary control—ABC—of an Euler–Bernoulli beam

2.1. State equation of an Euler– Bernoulli beam

Before proceeding to the theoretical development of an ABC system, three assumptions are employed in this
paper: (i) an Euler–Bernoulli beam is used as a target structure; (ii) only flexural vibration of a beam is
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considered; (iii) feedforward control is applied. Then, an equation of motion of an Euler–Bernoulli beam lying
along the x-axis is written as

EI
q4xðx; tÞ
qx4

þ rA
q2xðx; tÞ
qx2

¼ f ðx; tÞ, (1)

where ðx; tÞ, E, I, A, r and f ðx; tÞ are the deflection of the beam, Young’s modulus, cross-sectional inertia of
area, cross-sectional area, mass density and applied force per unit length, respectively. In the work, the effects
of shear deformation and rotary inertia are assumed to be neglected. To solve the partial differential equation,
consider first the homogeneous equation; i.e., f ðx; tÞ ¼ 0. The solution of Eq. (1) is assumed to be written in
the form, xðx; tÞ ¼ xðxÞejot where j and o are the imaginary unit and the angular frequency, respectively. Then
the deflection of a beam x(x) satisfies the following ordinary differential equation:

q4xðxÞ
qx4

� k4xðxÞ ¼ 0, (2)

where k is the flexural wavenumber defined as

k4
¼

rAo2

EI
. (3)

A general solution to Eq. (2) is written as

�xðxÞ ¼ a1e
�jkx þ a2e

�kx þ a3e
jkx þ a4e

kx, (4)

where a1, a2, a3 and a4 are constants that may be evaluated by the boundary condition properties of a beam.
Having obtained the deflection x(x), slope y(x), internal bending moment m(x) and internal shear force q(x)

may also be derived by the formulae provided in material mechanics, and these state variables may then be
expressed in the vector form as

zðxÞ ¼ BðxÞa, (5)

where the state vector z(x), matrix B(x) and vector a are defined as

zðxÞ ¼ col: �xðxÞ yðxÞ mðxÞ=EI qðxÞ=EI
� �

, (6)

BðxÞ ¼

e�jkx e�kx ejkx ekx

�jke�jkx �ke�kx jkejkx kekx

�k2e�jkx k2e�kx �k2ejkx k2ekx

jk3e�jkx �k3e�kx �jk3ejkx k3ekx

0
BBBB@

1
CCCCA, (7)

and

a ¼ col:ð a1 a2 a3 a4 Þ, (8)

where col. denotes a column vector. The matrix B(x) further expands to

BðxÞ ¼ KDðxÞ, (9)

where K, the flexural wavenumber matrix and D(x), the wave transfer matrix, are defined as

K ¼

1 1 1 1

�jk �k jk k

�k2 k2
�k2 k2

jk3
�k3

�jk3 k3

0
BBBB@

1
CCCCA, (10)
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and

DðxÞ ¼

e�jkx 0 0 0

0 e�kx 0 0

0 0 ejkx 0

0 0 0 ekx

0
BBB@

1
CCCA. (11)

Consider a beam element with points i�1 and i at both ends of the element as shown in Fig. 1, and for brevity
let z(xi�1) and z(x

i
) be zi�1 and zi, respectively. Then, with a view to describing the relation between these state

vectors, it needs to introduce a local coordinate system to these state vectors; with the origin of the local
coordinate system at zi�1, zi can be expressed as a function of the distance li between these two points. Using
Eqs. (5) and (9), the state vectors at the points, i�1 and i, are given by

zi�1 ¼ KDð0Þa ¼ Ka, (12)

and

zi ¼ KDðliÞa. (13)

Multiplying Eq. (12) by K�1 and substituting the resulting formula into Eq. (13) leads to the state equation of
a beam expressed in the form

zi ¼ KDðliÞK
�1zi�1 ¼ Ti;i�1ðliÞzi�1, (14)

where Ti, i�1 denotes the transfer matrix connecting the points i and i�1, and is defined as

Ti;i�1ðliÞ ¼ KDðliÞK
�1 ¼

t1 t4 t3 t2

k4t2 t1 t4 t3

k4t3 k4t2 t1 t4

k4t4 k4t3 k4t2 t1

0
BBB@

1
CCCA, (15)

where

t1 ¼ e�jkli þ e�kli þ ejkli þ ekli
� ��

4; t2 ¼ �je
�jkli � e�kli þ jejkli þ ekli

� ��
4k3,

t3 ¼ �e
�jkli þ e�kli � ejkli þ ekli

� ��
4k2; t4 ¼ je�jkli � e�kli � jejkli þ ekli

� ��
4k. ð16Þ
 

 

 

Fig. 1. Coordinate system of an Euler–Bernoulli beam.
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Using the flexural wavenumber matrix K, the wave vector w may be defined as

wðliÞ ¼ col: w1ðliÞ w2ðliÞ w3ðliÞ w4ðliÞ
� �

¼ K�1zðliÞ. (17)

Then, substituting the state vectors, z(x
i�1

) ¼ zi�1 and z(xi) ¼ zi, and the wave vectors, w(xi�1) ¼ wi�1 and
w(xi) ¼ wi, into Eq. (17) yields

wi ¼ K�1Ti;i�1ðliÞKwi�1 ¼ DðliÞwi�1. (18)

As seen from Eq. (18), the matrix D is found to be the transfer matrix bridging the wave vectors at i�1 and i,
and hence it is termed the wave transfer matrix.

Clearly from Eqs. (11) and (18), w1, w2, w3 and w4 are the function of e�jkli , e�kli , ejkli , and ekli , respectively.
The first wave, w1, propagates in the positive x direction, while the second term, w2, decays exponentially as x

increases, and thus w2 is an evanescent wave in the vicinity of the node i�1 (x ¼ 0). With the same reason, w3

is a backward propagating wave, while w4 is an evanescent wave in the vicinity of the node i (x ¼ l1) which
decays with distance.

2.2. Control law of the ABC system

Let us derive the control law of an ABC system for generating a desired boundary condition at the
designated position of a clamped–clamped beam. Although this paper deals with a clamped–clamped beam as
an example, the methodologies presented in the work are still applicable for a flexible beam with other
boundary conditions. Note that at conventional boundary conditions of a beam: free ðm ¼ q ¼ 0Þ, clamped
ðx ¼ y ¼ 0Þ, pinned ðx ¼ m ¼ 0Þ and sliding ðy ¼ q ¼ 0Þ, two of the four state variables—x; y;m; q—are always
zero, thereby eliminating two out of the four state variables leads to any kind of boundary condition. As such,
totally six boundary conditions exist theoretically—two of them: ðx ¼ q ¼ 0Þ and ðy ¼ m ¼ 0Þ may not be
observed in a real system, however realized by ABC as described later.

In order to conduct ABC, a pair of control forces—combinations of fc, shear force-type actuator and mc,
bending moment-type actuator as shown in Fig. 2—are required to suppress two state variables independently.
Supposing that these control forces act respectively at c1 and c2, the control force vectors fci (i ¼ 1, 2) are given by

For Controller Type 1:

fc1 ¼ col: 0 0 m1=EI 0
� �

, (19)

and

fc2 ¼ col: 0 0 m2=EI 0
� �

. (20)

For Controller Type 2:

fc1 ¼ col: 0 0 0 f 1=EI
� �

, (21)

and

fc2 ¼ col: 0 0 0 f 2=EI
� �

. (22)
  

Fig. 2. Controller types.
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For Controller Type 3:

fc ¼ col: 0 0 m1=EI f 1=EI
� �

. (23)

Moreover, a disturbance force fd is assumed to act at d. Then, the disturbance force vector fd is similarly
written as

fd ¼ col: 0 0 md=EI 0
� �

. (24)

To proceed to the theoretical development of an ABC system, this paper adopts the control forces of Type 1 as
an example. Furthermore, the state vectors zL and zR at the left end and right end of a clamped–clamped
beam, respectively, are expressed by

zL ¼ col: 0 0 mL=EI qL=EI
� �

, (25)

and

zR ¼ col: 0 0 mR=EI qR=EI
� �

. (26)

Using zL, fc1, fc2 and fd, the state vector zR in Eq. (26) becomes

zR ¼ TRLzL þ TRc1fc1 þ TRc2fc2 þ TRdfd . (27)

It is common practice for the transfer matrix method to express the initial state vector zL—left end of
the beam—using all external variables such as m1, m2 and fd. For this purpose, substituting Eqs. (19)–(26) into
Eq. (27) enables the state variables mL and qL at the left end of the beam to be expressed by

mL

qL

 !
¼ �T̂

�1

RL12 T̂RC112

m1

0

� �
þ T̂RC212

m2

0

� �
þ T̂Rd12

md

0

� �	 
�
EI , (28)

where the transfer matrix, TRL 2 C4�4 is partitioned into four sub-matrices, T̂RL i j 2 C2�2
ði; j ¼ 1; 2Þ

such that

TRL ¼
T̂RL11 T̂RL12

T̂RL21 T̂RL22

 !
. (29)

Likewise, TRc1, TRc2, TRd are partitioned into four sub-matrices T̂RC1 ij, T̂RC2 ij , T̂Rd ij (i, j ¼ 1, 2), respectively.
Let us generate an arbitrary boundary condition at x between the locations c2 and d (see Fig. 3). To do this,

using zL, fc1 and fc2, the state vector zx at x is written as

zx ¼ TxLzL þ Txc1fc1 þ Txc2fc2. (30)

Eq. (30) further expands to

zx ¼ A
m1

m2

 !
þ bmd , (31)

where A 2 C4�2 and b 2 C4�1 yield

A ¼ A1 A2

� �
, (32)

and

b ¼ �
1

EI

T̂xL12

T̂xL22

 !
T̂
�1

RL12T̂Rd12

1

0

� �
. (33)

Here A1 2 C4�1 and A2 2 C4�1 are defined as

A1 ¼
T̂xL12

T̂xL22

 !
T̂
�1

RL12T̂RC112 þ
1

EI

T̂xC112

T̂xC122

 !( )
1

0

� �
, (34)
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and

A2 ¼ �
T̂xL12

TxL

 !
T̂
�1

RL12T̂RC212 þ
1

EI

T̂xC212

T̂xC222

 !( )
1

0

� �
. (35)

Note again that T̂xL12, T̂xL22 etc., are the sub-matrices partitioned from TxL. Hence, the suppression of two
appropriate state variables out of four in zx in Eq. (31) generates a desired boundary condition at x. Suppose
the ith and jth entries of zx—for example, i ¼ 1 and j ¼ 2 refer to a ‘‘clamped’’ support—are to be eliminated.
Then, the control law for generating the desired boundary condition at x is described in a form based on the
assumption of feedforward control as

m1

m2

 !
¼ �A�1ij bijmd , (36)

where Aij 2 C2�2 and bij 2 C2�1 consist of the ith and jth row element(s) of A and b, respectively.
3. Numerical simulation for generating a boundary condition

Using the controller ‘‘Type 1’’ as shown in Fig. 2, let us generate a desired boundary condition at a
designated position x from the left end of a clamped–clamped beam. In a numerical analysis, a pair of moment
actuators are placed at xc1 ¼ 0.05m and xc2 ¼ 0.2m, respectively, the specification of the beam being shown in
Table 1. The beam is assumed to be subjected to a disturbance moment md acting at xd ¼ 1m with a sinusoidal
moment excitation with the amplitude of 0.0005Nm.

Fig. 4 illustrates the time histories—before ABC is applied—of four state variables: x, y, m, and q along the
x-axis of the beam excited near the third resonance frequency 35.27Hz. As seen from the figure, the boundary
condition ‘‘clamped support’’ at both ends of the beam is justified; that is, x and y are zero whereas m and q

are not. As the beam is excited near the third modal frequency, two nodes are observed at one-third and two-
thirds of the beam. From the viewpoint of a boundary condition, the nodes possess the characteristics quite
similar to a pinned support; both x and m are zero (note that under the influence of a near-field effect, the
positions where x and m become nullified are slightly different), while y and q are not.

With control forces expressed in Eq. (36), ABC permits one to generate any kind of a desired boundary
condition at the designated position of a beam. As an example, consider the case when generating a ‘‘clamped
support’’ ðx ¼ y ¼ 0Þ at x ¼ 0.42m of the beam using a pair of moment actuators located at xc1 ¼ 0.05m and
xc2 ¼ 0.2m, respectively. Illustrated in Fig. 5 are the time histories of four state variables of the beam excited
near the third modal frequency after ABC. As seen from the figure, both the displacement and slope at the
target point x ¼ 0.42m are controlled to be zero, hence a clamped support. The maximum value of the
displacement is suppressed to 0.017mm; 2.32% of the maximum displacement without ABC. It should be
noted that as a result of applying ABC for generating a clamped support to the beam, the characteristics of a
beam change, and hence the modal frequencies also change. Consequently, the responses of four state
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Fig. 4. Time histories of four state variables of a clamped–clamped beam driven near the third resonance frequency, 35.27Hz.

Table 1

Dimensions of a clamped–clamped beam used in numerical analysis

Total length Thickness Width

1.1m 1.5mm 4.5 cm

Young’s modulus Density Material

7.4� 1010N/m2 2770kg/m3 Duralumin

Fig. 5. Time histories of four state variables of a clamped–clamped beam under ABC for generating a clamped support at x ¼ 0.42m.

N. Tanaka, H. Iwamoto / Journal of Sound and Vibration 304 (2007) 570–586 577
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Fig. 6. Time histories of displacement response of a clamped–clamped beam under ABC for generating six kind of boundary support at

x ¼ 0.42m.
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variables in Fig. 5 vary corresponding to the driving frequency while keeping the designated boundary
condition, a clamped support, at the designated location of the beam.

Fig. 6 depicts the time histories of displacement response of the beam after ABC, demonstrating that, in
addition to classical four boundary conditions (clamped, free, pinned and sliding support), two more
boundary conditions—ðx ¼ q ¼ 0Þ and ðy ¼ m ¼ 0Þ—are generated at x ¼ 0.42m. The beam in the figure is
subjected to a disturbance force acting at xd ¼ 1m with the driving frequency near the first modal frequency,
6.5Hz, while a pair of moment controllers act at xc1 ¼ 0.05m and xc2 ¼ 0.2m, respectively.

4. Generation of a completely vibration-free state using ABC

4.1. What is vibration-free?

It is worth discussing what a vibration-free state is. Take a look again at Fig. 4 where two nodes appear in
the time histories of the displacement response of a clamped–clamped beam excited at the third modal
frequency 35.27Hz. It is normally conceived that the nodes are vibration-free so that there have been some
attempts to avoid vibration by intentionally designing a way such that a node position coincides with a grip
location of a hand-tool. It is true that when placing an accelerometer at a node, the sensor output becomes
small; however the node is not vibration-free. A vibration-free state means that all the four state variables
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dominating the dynamical characteristics of a beam must be null. Consider an example when a beam, the
initial conditions of which are zero, is not subject to any disturbance force. Then no deflection, no slope, no
bending moment and no shear force exist along the beam, and hence a whole region of a beam is completely
vibration-free.

It is one of the purposes of this paper to generate a vibration-free node via ABC. Then what is the benefit of
generating a vibration-free node? To answer this question, consider state vectors zi and zj at i and j of a beam,
respectively. Using a transfer matrix T, the state vector zj is related to zi. Hence it follows that

zj ¼ Tzi. (37)

Suppose the state vector zi is a null vector, in other words, the node at i is vibration-free, then the state vector
zj at j apparently becomes a null vector, implying that the area between the points i and j are also vibration-
free. Thus, generating a completely vibration-free node at a designated location enables one to produce a
vibration-free state around the designated point. Accordingly, the so-called node coming from ‘‘no
desplacement’’ where both x and m are zero seems to be vibration-free, however other state variables y and q

are non-zero, and hence the state vector at the node is not vibration-free but plays a role of bridging both sides
of the node to transfer structural waves.

Another question may arise. How does it differ from a well known DVFB [18,19] with an extremely high
feedback gain applied at a sensor/actuator collocated location? The answer is again clear when considering
the difference between the so-called node and a vibration-free node. Since the effort of conventional active
vibration control including DVFB results in simply producing a node at a sensor location, vibration-free
state may not be realized. Even with the control performance for minimizing kinetic energy of a beam
being introduced, a vibration-free state may not be realized since the design concept of vibration control is
different.

4.2. Completely vibration-free state via ABC

ABC has potential to create a completely vibration-free state in the target region of a beam. Consider a
beam with any kind of boundary condition at both ends of the beam with two control forces m1 and m2 acting
as shown in Fig. 3. The state vector zs at s between L, the left end of the beam, and the control point c1 may be
written as

zS ¼ TSLzL, (38)

where the mth element and nth element of zL are assumed to be non-zero. When applying ABC to the left end
of the beam so as to nullify the two non-zero elements of zL, the state vector zL then becomes a null vector, and
hence the state vector zs in Eq. (38) becomes also a null vector. As such, all the state variables: x; y;m and q of
zs become zero, whereby a completely vibration-free state—neither progressive waves nor reflected waves
exist—is generated in the region between the left end of the beam and the point s. Note that the point s may be
located anywhere between L and the control point c1, so that in effect the vibration-free state may be produced
between L and the control point c1.

Next, let us apply ABC onto the point at s between the left end of the beam and the control point c1 (see Fig.
3) in an attempt to assign any kind of boundary condition; say, the kth and lth elements of the state vector zs

are to be suppressed. Then, Eq. (38) expands to

0k ¼ tkmzLm þ tknzLn, (39)

0l ¼ tlmzLm þ tlnzLn, (40)

where tkm, for instance, expresses the kth and mth element of the transfer matrix TsL, and zLm denotes the mth
element of zL. As seen from Eqs. (39) and (40), the elements, zLm and zLn, which are non-zero before ABC are
nullified via ABC. Thus, the initial state vector zL becomes null, with the result that the state vector between
the left end of the beam and the control point c1 also becomes a null vector, hence vibration-free in the area. In
summary, by applying ABC at any location of the beam between the left end of the beam and the control point
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Fig. 7. Time histories of displacement response of a clamped–clamped beam under ABC for generating a completely vibration-free state in

the designated region of the beam; control target is xs ¼ 0.05m.

N. Tanaka, H. Iwamoto / Journal of Sound and Vibration 304 (2007) 570–586580
c1, including the left end, ABC enables one to generate a completely vibration-free state in the region of a
beam by producing any kind of boundary condition.

4.3. Numerical simulation for generating a vibration-free state

Illustrated in Fig. 7 are the time histories of displacement response of a clamped–clamped beam after ABC
in an effort to generate a clamped support at xs ¼ 0.05m, with the control locations xc1 and xc2 varying from
0.2 to 0.8m, and 0.3 to 0.9m, respectively, while a disturbance moment md acts at xd ¼ 1m with a sinusoidal
moment excitation with the amplitude of 0.0005Nm.

Clearly from the figure, a completely vibration-free state is generated in the designated region of the beam,
albeit the control locations shift. Note that by merely generating any kind of boundary condition (clamped
support in this case) at any place between the left end and xc1, a vibration-free state is generated in between. In
order to verify whether it is actually vibration-free or not, other state variables; slope, bending moment and
shear force, should also be demonstrated in the figure, however, in light of the definition of the state variables
derived by taking the derivative of displacement with respect to x, it is easily understood that these state
variables become zero in the region since displacement of a beam is zero from the left end to xc1 where a
control actuator is positioned. Note that the segment from the actuator location xc1 to the right end of the
beam is outside the sphere of control. Consequently the properties of the region are characterized by those of a
clamped–clamped beam, the effective length of which is shortened as the actuator location shifts toward the
right end of the beam. Hence, the effective stiffness of the segment increases so too does the corresponding
structure modal frequency.

Fig. 8 shows the time histories of the displacement response of the clamped–clamped beam after ABC with
the control locations xc1, xc2 and control target location xs being fixed at 0.6, 0.7 and 0.05m, respectively,
while the driving frequency f of a disturbance force varies from 1 to 50Hz. As seen from the figure, the beam
segment between the left end and xc1 becomes completely vibration-free at any driving frequency via ABC.
The maximum amplitude of the displacement response in each picture seems to be suppressed; however, as
described above the right-hand side of the controller location is beyond the sphere of ABC, so that the
suppression of vibration in the segment cannot be expected. Therefore, driving frequency happens to be at
off-resonance frequency of a (virtually) shortened segment in this case, hence small amplitude of the
displacement response.
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Fig. 8. Time histories of displacement response of a clamped–clamped beam under ABC for generating a completely vibration-free state in

the designated region of the beam; driving frequency varies from 1 to 50Hz.
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5. Experiment

5.1. Experimental setup

Feedforward control requires the full knowledge of a target model. Given the full model of a structure,
theoretically achievable control effect may be accomplished as shown in Figs. 5–8. If there exists some discrepancy
between a mathematical model and a real system, the control effect is deteriorated. When a mathematical model
cannot be obtained beforehand, a practical method to cope with this problem may be the use of adaptive
feedforward control based upon a filtered-x least mean square (LMS) algorithm. The adaptive feedforward
control does not require a mathematical model a priori. Prior to and/or during control, system identification may
be conducted to estimate the transfer function between an error sensor and an actuator location. Then, in an
effort to minimize an error sensor output, the feedforward control exerts, thereby suppressing unwanted two state
variables out of four, and thus producing a new boundary condition at the error sensor location.

Fig. 9 shows a picture of the test rig used in an experiment for the purpose of verifying the validity of ABC
for generating a desired boundary condition as well as creating vibration-free state at the designated area of a
clamped–clamped beam, the specification of which is the same as used in the numerical analysis (see Table 1).
Depicted in Fig. 10 is a schematic diagram of ABC implementation based upon adaptive feedforward control
using a filtered-x LMS algorithm. As seen in Figs. 9 and 10, envelopes of a displacement response of the beam
were obtained using a wave visualization system that had been developed for this experiment, consisting of a
gap sensor array, each sensor being located along the beam with an 8.5 cm interval as shown in Fig. 9. The
sensor outputs acquired simultaneously by a data logger were then sent into the wave visualization system to
obtain displacement envelopes of the beam. As with a feedforward control strategy using a filtered-x LMS
algorithm, two gap sensors were installed at s1 and s2 to obtain displacement outputs xðxs1Þ and xðxs2Þ. With
these sensor outputs, an average displacement and a slope were estimated by

~x ¼
xðxs1Þ þ xðxs2Þ

2
, (41)

and

~y ¼
xðxs1Þ � xðxs2Þ

xs2 � xs1
. (42)
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Fig. 9. Outlook of experiment rig.

 

 

  

 

Fig. 10. Schematic diagram of ABC implementation.
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These processed signals were then input to an adaptive feedforward control system so as to minimize the
squared value of error signal outputs, producing control signals to drive two moment actuators placed at c1
and c2.

5.2. Experimental results

Prior to conducting active boundary control experimentally for generating a desired boundary condition at
any location of a beam as well as producing a completely vibration-free state at the designated region of the
beam, some fundamental characteristics of a target beam were measured. Fig. 11(a) illustrates the envelopes of
displacement response of a beam excited at the third modal frequency of 35Hz, and the maximum amplitude
of the displacement response was measured as 75 mm. A dashed curve in Fig. 12 depicts the dynamical
compliance of the beam obtained at 20 cm from the left end of the beam as will be discussed shortly. As seen
from the figure, six structural modes appear in the frequency range up to 100Hz.

Depicted in Fig. 11(b) is the displacement response of the beam at 35Hz after ABC conducted in an effort to
generate a clamped support at x ¼ 0.42m. A pair of gap sensors with the resolution of 0.1 mm were
respectively implemented at xs1 ¼ 0.4m and xs2 ¼ 0.44m, while a pair of piezo ceramic actuators (Type 1 in
Fig. 2) were installed at xc1 ¼ 0.05m and xc1 ¼ 0.2m. As seen from the figure, a clamped support was
generated at the designated position x ¼ 0.42m. The maximum displacement of the beam was reduced to
0.95 mm, about 12% of that before ABC. Thus the objective of producing a desired boundary condition; a
clamped support in this case, was accomplished experimentally via ABC. Comparing a theoretically
achievable control effect shown in Fig. 5 with the experimental result in Fig. 11(b) shows a good agreement.

Next, with a view to realizing a vibration-free state in a desired region of a beam, an experiment
was conducted. Fig. 11(c) shows the experimental result of a displacement response of the beam after ABC.
Fig. 11. Experimental results of ABC: (a) time histories of displacement response before ABC; (b) time histories of displacement response

after ABC conducted to generate a clamped support at x ¼ 0.42m; and (c) time histories of displacement response after ABC for

generating a completely vibration-free state.
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Fig. 12. Experimental results of dynamical compliances at x ¼ 20 cm before and after ABC with a random excitation.
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As seen from the figure, a vibration-free state in the region between the left end of the beam and the location
around x ¼ 0.4m was produced. In this case, error sensors were placed at xs1 ¼ 0.17m and xs2 ¼ 0.21m, while
moment actuators were moved to xc1 ¼ 0.75m and xc2 ¼ 0.9m, respectively. Unlike a simulation result,
achieving a literally vibration-free state is not an easy task in practice. However, taking into account the sensor
resolution (0.1 mm in this case), the power of control actuators used and the variability of a flexible beam
response that is likely to be affected by environmental disturbance, the control effect shown in the figure is
satisfactory. More important, the experimental results show the validity of generating a vibration-free state in
a designated region of a beam via ABC.

The maximum amplitude of the beam deflection observed in the right-hand side of the controller location
was reduced to 2.5 mm; only 3% of that before ABC. It should be noted that the region from the actuator
location toward the right end of the beam is beyond the sphere of control as the control point is outside the
area, so that when a driving frequency varies, the deflection response also changes.

Comparing the numerical simulation in Figs. 7 and 8 with the experimental result in Fig. 11(c), some
discrepancies appear. In the numerical simulation, the vibration free region is generated from the left end of
the beam to the actuator location at xc1; in the experimental result, however, the near field effect around xc1 is
considerably strong, with the result that the vibration free region is narrowed; from the left end of the beam to
the location around x ¼ 0.4m. The reason for this is the same as stated above. In addition, the load effect due
to the attachment of the piezo-ceramic actuators on the beam may be attributed to the discrepancies.

As long as active control of sinusoidal vibration as was discussed in Fig. 11 is concerned, it may be
performed by a mere phase and gain adjustment of a control signal no matter what control strategy might be
employed. When it comes to random vibration, it is no longer the matter of a signal manipulation but
implementation of a controller dynamics in a frequency band of interest. Accordingly, difficulty as well as
complexity in control immediately arises. In reality, random vibration is common so that it is worth
investigating into the practicality of ABC.

Fig. 12 shows the measured dynamical compliances (acquired at 20 cm from the left end of the beam) before
and after ABC obtained by exciting the beam with a random force, the driving signal of which was generated
by putting a white noise signal into a low-pass filter with the cutoff frequency at 150Hz. The experimental
condition to carry out ABC was the same as was used in Fig. 11(c). As with an adaptive feedforward control
set up, the specifications are as follows: digital signal processor (dSPACE 1103); 256 taps for a system
identification; 128 taps for an FIR controller; sample rate is 1 kHz. Solid curve in Fig. 12 indicates the
dynamical compliance after ABC. Comparing both plots in the figure, it can be seen that generation of
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a perfect vibration-free state was not achieved in practice due to the same reason stated above, however even
when a beam was subjected to a random force, satisfactory reduction at the control point of the beam was
obtained. Thus irrespective of driving frequency varying randomly in a wide range, it is revealed that ABC
enables the generation of a vibration-free state at the designated region of the beam. The maximum reduction
obtained experimentally was measured as 45 dB.

6. Conclusions

In light of the fact that structural modes of a flexible beam are determined by boundary conditions, ABC
(active boundary control) has been presented. ABC aims to generate a desired boundary condition at the
designated location of a beam. First, the feedforward control law of the ABC system was derived using a
transfer matrix method. In addition to conventional four boundary conditions, two more boundary conditions
were found to be produced by ABC. Moreover, ABC enables the generation of a completely vibration-free
state—neither progressive waves nor reflected waves exist—in the designated region of a beam. Finally, with a
view to verifying the validity of ABC, an experiment was conducted using an adaptive feedforward control
based upon a filtered-x LMS algorithm, demonstrating that ABC generates a desired boundary at a designated
location of a beam, and creates a completely vibration-free state at a designated area of a beam.
References

[1] H.H. Rosenbrock, Distinctive problems of process control, Chemical Engineering Progress 58 (9) (1962) 43–50.

[2] L.A. Gould, M.A. Murray-Lasso, On the modal control of distributed systems with distributed feedback, IEEE Transactions on

Automatic Control AC-11 (4) (1966) 729–737.

[3] J.D. Simon, S.K. Mitter, A theory of modal control, Information and Control 13 (1968) 316–353.

[4] L. Meirovitch, H. Baruh, The implementation of modal filters for control of structures, Journal of Guidance 8–6 (1985) 707–716.

[5] D.R. Vaughan, Application of distributed parameter concepts to dynamic analysis and control of bending vibrations, ASME Journal

of Basic Engineering June (1968) 157–166.

[6] A.H. von Flotow, J.B. Schafer, Wave absorbing controllers for a flexible beam, Journal of Guidance 9–6 (1986) 673–680.

[7] G.M. Procopio, J.E. Hubbard Jr., Active damping of a Bernoulli-Euler beam via end point impedance control using distributed

parameter techniques, ASME Design Technology Conference, 1987, pp. 35–46.

[8] B.R. Mace, Active control of flexural vibrations, Journal of Sound and Vibration 114–2 (1987) 253–270.

[9] D.W. Miller, S.R. Hall, A.H. von Flotow, Optimal control power flow at structural junctions, Journal of Sound and Vibration 140 (3)

(1990) 475–497.

[10] D.G. MacMartin, S.R. Hall, Control of uncertain structures using an H-infinity power flow approach, Journal of Guidance 14 (3)

(1990) 521–530.

[11] N. Tanaka, Y. Kikushima, Active wave control of a flexible beam (Proposition of the active sink method), JSME International

Journal 34–2 (1991) 159–167.

[12] N. Tanaka, Y. Kikushima, Active wave control of a flexible beam (Fundamental characteristics of an active sink system and its

verification), JSME International Journal 35–2 (1992) 236–244.

[13] N. Tanaka, Y. Kikushima, Optimal vibration feedback control of an Euler–Bernoulli beam: toward realization of the active sink

method, ASME,Journal of Vibration and Acoustics 121 (1999) 174–182.

[14] R.L. Kosut, H. Salzwedel, A. Emami-Naeini, Robust control of flexible spacecraft, Journal of Guidance 6–2 (1983) 104–111.

[15] G. Stein, J.C. Doyle, Beyond singular values and loop shapes, Journal of Guidance and Control 14 (1) (1991) 5–16.

[16] S. Boyd, Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, 1994.

[17] J.N. Aubrun, Theory of the control of structures by low-authority control, Journal of Guidance and Control 3 (1980) 444–451.

[18] M.J. Balas, Direct velocity feedback control of large space structures, Journal of Guidance 2–3 (1979) 252–253.

[19] M.J. Balas, Trends in large space structure control theory: fondest hopes, Wildest Dreams, IEEE Transactions on Automatic Control

AC 27 (1982) 522–535.

[20] R.D. Joslin, R.A. Nicolaides, G. Erlebacher, M.Y. Hussaini, M.D. Gunzburger, Active control of boundary-layer instabilities: use of

sensors and spectral controller, AIAA Journal 33 (8) (1995) 1521–1523.

[21] R.W. Metcalfe, D. Rutland, J.H. Duncan, J.J. Riley, Numerical simulations of active stabilization of laminar boundary layers, AIAA

paper, 85-0567, 1985.

[22] R. Athnasingham, K. Breuer, Active control of turbulent boundary layers, Journal of Fluid Mechanics 495 (2003) 209–233.

[23] C.F. Baicu, C.D. Rahn, B.D. Nibali, Active boundary control of elastic cables: theory and experiment, Journal of Sound and Vibration

198 (1) (1996) 17–26.

[24] R. Datko, J. Lagnese, M.P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations,

SIAM Journal of Control and Optimization 24 (1986) 152–156.



ARTICLE IN PRESS
N. Tanaka, H. Iwamoto / Journal of Sound and Vibration 304 (2007) 570–586586
[25] F. Contrad, O. Morgul, On the stability of a flexible beam with a tip mass, SIAM Journal of Control and Optimization 36 (6) (1998)

1962–1986.

[26] J. Liang, Y. Chen, B.Z. Guo, A new boundary control method for beam equation with delayed boundary measurement using

modified Smith prediction, Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, 2003, pp. 809–814.

[27] A. Baz, Boundary control of beams using active constrained layer damping, Transactions of ASME, Journal of Vibration and

Acoustics 119 (April) (1997) 166–172.

[28] E.C. Pestel, F.A. Leckie, Matrix Methods in Elastomechanics, McGraw-Hill Book Co., New York, 1963.


	Active boundary control of an Euler-Bernoulli beam for generating vibration-free state
	Introduction
	Active boundary control--ABC--of an Euler-Bernoulli beam
	State equation of an Euler-Bernoulli beam
	Control law of the ABC system

	Numerical simulation for generating a boundary condition
	Generation of a completely vibration-free state using ABC
	What is vibration-free?
	Completely vibration-free state via ABC
	Numerical simulation for generating a vibration-free state

	Experiment
	Experimental setup
	Experimental results

	Conclusions
	References


